Journal of Organometallic Chemistry, 116 (1976) 219–229 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

ZUR ELEKTRONENSTRUKTUR METALLORGANISCHER KOMPLEXE DER f-ELEMENTE

V*. INTERPRETATION DER GEGENWÄRTIG BEKANNTEN SPEKTROSKOPISCHEN UND MAGNETOCHEMISCHEN EIGENSCHAFTEN VON TRIS-(CYCLOPENTADIENYL)-URAN(IV)-CHLORID AUF DER GRUNDLAGE DER KRISTALLFELD-THEORIE

H.-D. AMBERGER

Institut für Anorganische Chemie der Universität Erlangen-Nürnberg, D-8520 Erlangen, Egerlandstrasse 1 (Deutschland)

(Eingegangen den 13. Februar 1976)

Summary

The bands of the room temperature absorption spectrum of $(C_5H_5)_3U^{IV}Cl$ have been identified on the basis of the complete energy matrix of the tetrahedral f^2 -system. Using the parameter set $F_2 \approx 170$, $F_4 \approx 36.7$, $F_6 \approx 3.5$, $\zeta_{5f} \approx$ 1719, $B_4^0 \approx -636$ and $B_6^0 \approx -261$ cm⁻¹ a satistisfactory agreement between observed and calculated signals has been achieved. Detailed analysis of the fine structure of the spectrum has led to a derivation of the crystal field splitting pattern in the low energetic region. The results agree well with the known temperature dependence of the paramagnetic susceptibility. With the aid of the tetrahedral first-order crystal field functions a rough estimate of the dipolar and the contact contribution to the isotropic ¹H NMR-shift of the ring protons could be made.

Zusammenfassung

Auf der Grundlage der vollständigen Diagonalisierungsmatrix des tetraedrischen f^2 -Systems wurden die Banden des Raumtemperatur-Absorptionsspektrums von $(C_5H_5)_3U^{IV}Cl$ identifiziert. Mit Hilfe des Parametersatzes: $F_2 \approx 170$, $F_4 \approx$ 36.7, $F_6 \approx 3.5$, $\zeta_{5f} \approx 1719$, $B_4^o \approx -636$ und $B_6^o \approx -261$ cm⁻¹ konnte befriedigende Übereinstimmung zwischen gefundenen und berechneten Signalen erzielt werden. Eine nähere Analyse der Feinstruktur des Spektrums ergab das Kristallfeld-Aufspaltungsmuster im Niederenergiebereich, das sehr gut mit der Tempe-

* IV. Mitteilung siehe [1].

raturabhängigkeit der paramagnetischen Suszeptibilität vereinbar ist. Mit Hilfe der tetraedrischen Kristallfeldfunktionen erster Ordnung konnte der Kontaktbzw. Pseudokontakt-Anteil an der isotropen ¹H-NMR-Verschiebung der Ringprotonen abgeschätzt werden.

Einführung

Um die Verbindung Tris-(cyclopentadienyl)-uran(IV)-chlorid (= Cp_3UCl), den am längsten bekannten metallorganischen Komplex der Actinoiden-Serie [2], hat sich zwar in den beiden letzten Jahrzehnten eine umfangreiche Chemie entwickelt [3-8], die Kenntnis der vorliegenden Elektronenstruktur hat sich jedoch während dieser Zeit, obwohl Röntgenstrukturdaten vorliegen [9], nicht nennenswert verbessert.

Die spärlichen, ursprünglich von Reynolds und Wilkinson mitgeteilten Suszeptibilitätswerte [2] sind inzwischen ergänzt worden [10,11], wesentliche Informationen über das verwirklichte Kristallfeld (= KF)-Aufspaltungsmuster konnten hieraus allerdings nicht erhalten werden [10,12]. Gleichfalls haben die von Ammon et al. [13] und Spiegl [14] bestimmten paramagnetischen Verschiebungen der ¹H-NMR-Ringprotonensignale bislang wenig zu einem tieferen Verständnis der Elektronenstruktur beigetragen.

Das optische Absorptionsspektrum von Cp_3UCl im NIR/VIS-Bereich * ist wenigstens in seinen Grundzügen, seit den Untersuchungen von Reynolds und Wilkinson bekannt [2]; Absorptionsspektren von interpretierbarer Qualität wurden jedoch erst von Anderson und Crisler [15,16] sowie Kanellakopulos et al. [13] aufgenommen. Eine KF-theoretische Analyse der Elektronenanregungsspektren von Cp_3UCl , Cp_3UBr und Cp_3UJ ist von Fischer et al. zwar angekündigt worden [13], trotz intensiver Arbeiten auf diesem Gebiet [17–20] konnten wir die zahlreichen Signale mit Hilfe alleiniger Symmetriebetrachtungen jedoch nicht zugeordnen.

Grössere Erfolge versprechen wir uns von einer mehr theoretisch orientierten Analyse der bereits mitgeteilten Absorptionsspektren [13,15,20] auf der Grundlage der kürzlich geglückten KF-theoretischen Analysen der Elektronenspektren von UCp₄ [21] und Cp₃UBH₄ [22].

Experimentelles

Das in Fig. 1 gezeigte Absorptionspektrum einer benzolischen Cp_3UCl -Lösung der Konzentration 6.6 mg ml⁻¹ ist im Jahre 1967 von Kanellakopulos aufnommen und in [13] veröffentlicht worden. Da dieses Spektrum den sehr informativen Bereich zwischen 4000 und 6500 cm⁻¹ nicht umfasst, wurden die dort beobachtbaren Signale der Diplomarbeit von Wagner entnommen, in der auch über erste Tieftemperatur-Remissionsmessungen berichtet wird [20]. Die in Fig. 3 veranschaulichte Temperaturabhängigkeit der paramagnetischen Ringprotonenverschiebung ist gleichfalls [13] entnommen. Einige ergänzende Daten, die

^{*} NIR/VIS = near infrared/visible.

in Tab. 2 angeführt sind, wurden von Spiegl mit Hilfe des Kernresonanzspektrometers C-60HL der Firma Jeol aufgenommen [14].

A. Zuordnung der Absorptionsbanden

Im Raumtemperatur-Absorptionsspektrum von Cp₃UCl sind innerhalb des Messbereiches von 1600-550 nm ca. 20 mit-Schultern versehene Absorptionsbanden zu beobachten (vgl. Fig. 1), die wir sämtlich elektronischen Übergängen innerhalb der f^2 -Konfiguration zuschreiben. Innerhalb des Messbereiches sind unter Zugrundelegung von T_d -Symmetrie des effektiven KF ca. 23 (vgl. Tab. 1) und bei Berücksichtigung der tatsächlich vorliegenden C_{3v} -Symmetrie [9] ca. 37 KF-Zustände unterschiedlicher Energien zu erwarten (zufällige Entartungen sollen vorläufig noch ausgeschlossen werden). Die Bandenarmut des Elektronenspektrums deutet somit neben magnetochemischen Befunden (vgl. Abschn. C) darauf hin, dass die tetraedrische Symmetrie des KF nicht übermässig stark gestört ist, und dass deshalb bei der Zuordnung der Absorptionsbanden, insbesondere im schlechter aufgelösten kurzwelligen Bereich des Spektrums, die Annahme eines tetraedrischen effektiven KF vorläufig gerechtfertigt erscheint.

Die bei der Zuordnung der Absorptionsbanden benutzte Energiematrix des "tetraedrischen" f^2 -Systems, welche die Einflüsse der interelektronischen Wechselwirkung, der Spin-Bahn-Kopplung und des tetraedrischen KF * simultan berücksichtigt, ist identisch mit derjenigen, die in [21] und [22] verwendet, und deren Korrektheit durch die in [21] genannten Methoden überprüft worden ist.

Da zwischen den Elektronenspektren der Komplexe vom Typ Cp_3UX mit $X = Chlorid und denen mit <math>X = BH_4$ und Cp keinerlei Ähnlichkeit mehr besteht, stellen die bereits bekannten Parameter-Sextetts ** von Cp_3UBH_4 und UCp_4 keine adäquaten Ausgangs-Parametersätze mehr dar. In [22] stellten wir jedoch fest, dass das Prinzip von der "Additivität der individuellen Ligandenfeldstärken" (bei unterschiedlichen Liganden) auch bei den metallorganischen Komplexen der Actinoiden zu einem gewissen Grad Gültigkeit zu besitzen scheint. Unter Benützung der bereits verlässlich bestimmten Parametersätze der quasi-tetraedrischen Verbindungen UCp_4 [21] und UCl_4 (gasförmig) [24] sollte bei Anwendbarkeit des "Additivitätsprinzips" gemäss der stöchiometrischen Zusammensetzung von Cp_3UCl der nachstehend definierte Parametersatz:

Parametersatz von $Cp_3UCl = [3 \times Parametersatz von UCp_4 + Parametersatz von UCl_4]/4$

ein adäquates Parameter-Sextett darstellen.

Nachdem wir die Parameter (in cm⁻¹): $F_2 = 170.2$, $F_4 = 36.72$, $F_6 = 3.50$, $\zeta_{5f} = 1718.7$, $B_4^o = -636.4$ und $B_6^o = -261.0$ in unsere Energiematrix eingesetzt hatten, erhielten wir nach deren Diagonalisierung die in Tab. 1 angegebenen KF-Eigenwerte. Die erzielte Übereinstimmung zwischen berechneten und gefundenen Bandenlagen ist bei Cp₃UCl erwartungsgemäss bei weitem nicht so gut wie bei UCp₄ [21] oder Cp₃UBH₄ [22], bei denen sich die Symmetrieerniedrigungsef-

^{*} Dem Einfluss des tetraedrischen KF wurde hier durch den Hamilton-Operator: $H_{KF}(T_d) = B_{A}^{2}\beta(O_{A}^{2} + 5 O_{4}^{4}) + B_{A}^{2}\gamma(O_{A}^{2} - 21 O_{6}^{4})$ Rechnung getragen. Die O_{n}^{m} -Ausdrücke haben die Bedeutung von Drehimpulsoperatoren, β und γ stehen für die von Stevens [23] eingeführten Operator-Äquivalent-Faktoren.

^{}** Es wurden die Parameter F_2 , F_4 , F_6 , ζ_{5f} , B_4^0 und B_6^0 berücksichtigt.

Fig. 1. Das Raumtemperatur-Absorptionsspektrum von Cp₃ UCl; gemessen in Extinktion. Energieangaben in cm^{-1} .

fekte in erheblich engeren Grenzen bewegen; sie gestattet jedoch eine eindeutige Zuordnung praktisch aller Absorptionsbanden und zahlreicher Schultern zu den zugrundeliegenden tetraedrischen Ausgangs-Zuständen (vgl. Tab. 1). Nach mehreren Anpassungscyclen im Sinne der "Methode der kleinsten Fehlerquadrate" konnten wir zwar einzelne Bandengruppierungen rechnerisch besser reproduzieren, die mittlere Abweichung zwischen berechneten und beobachteten Bandenlagen zeigte jedoch nur geringfügige Konvergenz, so dass wir auf die Angabe dieser Parametersätze verzichten.

B. Abweichung vom streng tetraedrischen Fall

Die hier beobachtete, vergleichsweise grosse Abweichung zwischen dem rechnerisch und dem experimentell erhaltenen KF-Aufspaltungsmuster führen wir bevorzugt auf Symmetrieerniedrigungseffekte zurück. Bei der Symmetrieerniedrigung $T_d \rightarrow C_{3\nu}$ bleiben die tetraedrischen Zustände Γ_1 , Γ_2 und Γ_3 erhalten $(\Gamma_1 \rightarrow A_1, \Gamma_2 \rightarrow A_2, \Gamma_3 \rightarrow E)$, während die dreifach entarteten Zustände Γ_4 und Γ_5 in jeweils zwei Komponenten aufspalten ($\Gamma_4 \rightarrow A_2 + E$, $\Gamma_5 \rightarrow A_1 + E$). Der fiktive "tetraedrische" KF-Grundzustand $\Gamma_5(^{3}H_4)$ spaltet demnach in die Komponenten A_1^{I} und E^{I} auf, wobei gemäss den Tieftemperatur-Suszeptibilitätsdaten (siehe Abschn. C) der unmagnetische KF-Zustand A_1^{I} unterhalb des magnetisch aktiven Niveaus E^{I} zu liegen kommt.

Die hier interessierende Energieseparation $E(E^{I}) - E(A_{1}^{I})$ lässt sich durch Vergleich der Übergänge $A_{1}^{I}({}^{3}H_{4}) \rightarrow A_{1}({}^{3}P_{0})$ und $E^{I}({}^{3}H_{4}) \rightarrow A_{1}({}^{5}P_{0})$ erhalten und beträgt gemäss Tab. 1 ca. 193 [13] bzw. 190 cm⁻¹ [20]. Laut Symmetriebetrachtungen sollte die gesuchte Energieseparation auch durch Differenzbildung der Übergänge $A_{1}^{I} \rightarrow \Gamma_{1}^{i}$ bzw. $E^{I} \rightarrow \Gamma_{1}^{i}$ und der Übergänge $A_{1}^{I} \rightarrow \Gamma_{3}^{i}$ bzw. $E_{1} \rightarrow \Gamma_{3}^{i}$ * er-

^{*} Mit Γ_1^i bzw. Γ_3^i werden hier die zugrundeliegenden i-ten angeregten tetraedrischen KF-Zustände der Symmetrie Γ_1 bzw. Γ_3 bezeichnet, die bei "Einschaltung" der C_{3v} -Symmetrie wie oben erwähnt, nicht aufspalten.

Zugrundelie- gender "tetra- edrischer" Zu- stand	Berechnete KF-Energie	Beobachteter KF-Übergang				
		Wagner [20]	Kanellalopulos [13]	Anderson et al. [16]		
$\Gamma_5(^{3}H_4)$	0			<u> </u>		
$\Gamma_3(^3H_4)$	326					
$\Gamma_4(^{3}H_4)$	1080					
$\Gamma_1(^3H_4)$	2539					
$\Gamma_{3}(^{3}F_{2})$	2801					
$\Gamma_5(^3F_2)$	4285					
$\Gamma_4(^{3}H_5)$	4666	4512, 4275 ^a				
$\Gamma_5(^3H_5)$	6186	5747, 5543 ^a , 5399 ^a		6198, 6051		
		6203, 6002 ^a , 5851 ^a				
$\Gamma_3(^3H_5)$	7126	≈7077, 6844 ^a , 6773 ^a	≈7090,6868			
$\Gamma_2({}^3F_2)$	7653 ^b	7602 7512	7751 7559	7717 7514		
$\Gamma_4(^{3}H_5)$	7793	1032, 1313	7.51, 7552	1111, 1514		
$\Gamma_5({}^3F_3)$	8350	18250 8282	0910	9294		
$\Gamma_4({}^3F_3)$	8363	18250, 8382	0312	0204		
$\Gamma_1({}^3F_4)$	8973	8772	8841	8811		
$\Gamma_5(^3F_4)$	9418	9460	9523	9479		
$\Gamma_4({}^3F_4)$	9662	9661	9721	9701		
$\Gamma_3({}^3F_4)$	10047	9861	9930	9889		
$\Gamma_2(^{3}H_6)$	10449	10421	10526			
$\Gamma_5(^{3}H_6)$	10843	10775	10857	10808		
$\Gamma_1({}^{3}H_6)$	11462	≈11100	≈11070			
$\Gamma_{3}(^{3}H_{6})$	12201	12077) 12121			
$\Gamma_4(^{3}H_6)$	12227	12626	12722			
$\Gamma_5(^3H_6)$	12970	13297	13369			
$\Gamma_5(^1D_2)$	14143	13850, 13642	13947, 13716	14049		
$\Gamma_3(^1D_2)$	14461	14265, 14064	14326, 14137	14203		
$\Gamma_5(^1G_4)$	14946	14925	15060	14890		
$\Gamma_1({}^{3}P_0)$	15197	15503, 15313	15601, 15408	15449		
$\Gamma_1(^1G_4)$	16058	16420, 16228	16474, 16260			
$\Gamma_4(^1G_4)$	16901	16920	16977	16784		
$\Gamma_3(^1G_4)$	17005	310320] 10577] 10/84		
$\Gamma_4({}^{3}P_1)$	17632	17730, 17544	17793, 17574			
$\Gamma_5(^1I_6)$	18608	18519	18552	18389		
$\Gamma_2(^{1}I_6)$	19015 ^b					
$\Gamma_5(^1I_6)$	19656		10991	10607		
$\Gamma_1(^1I_6)$	19785		19801	1909(
$\Gamma_4(^{1}I_6)$	20001		20202			
$\Gamma_3(^{3}P_2)$	21758		21739	21584		

ZUORDNUNG DER BEOBACHTETEN SIGNALE

^a Von Wagner als "heisser" Übergang erkannt. ^b Die Übergänge $\Gamma_5 \rightarrow \Gamma_2$ bzw, $\Gamma_3 \rightarrow \Gamma_2$ (T_d -Nomenklatur) sind symmetrieverboten. Berücksichtigt man jedoch die Symmetrieerniedrigung $T_d \rightarrow C_{3v}$, so ist der "heisse" Übergang $E \rightarrow A_2$ (C_{3v} -Nomenklatur) erlaubt.

hältlich sein. Energetisch gut isolierte Γ_1 - bzw. Γ_3 -KF-Zustände sind die Niveaus $\Gamma_1({}^1G_4)$, $\Gamma_3({}^3H_5)$ und etwas schlechter isoliert der Zustand $\Gamma_3({}^1D_2)$. Sämtliche Absorptionsbanden, die Übergängen zu diesen Niveaus entsprechen, haben auf der langwelligen Seite Schultern, bzw. werden im besser aufgelösten Bereich des Spektrums von einer weiteren Bande begleitet, die gemäss Tab. 1 ca. 214, 222 und 189 [13] bzw. 192, 232 und 201 cm⁻¹ [20] vom Hauptsignal separiert sind. Insbesondere ist bemerkenswert, dass das schwache Signal bei ca. 7090 cm⁻¹ dem Übergang $A_1^{I}({}^{3}H_4) \rightarrow \Gamma_3({}^{3}H_5)$ und das erheblich intensivere Signal bei 6868 cm⁻¹ dem "heissen" Übergang $E^{I}({}^{3}H_4) \rightarrow \Gamma_3({}^{3}H_5)$ entsprechen, was auch

durch Tieftemperatur-Absorptionsmessungen (s. unten) belegt werden konnte. Auf der langwelligen Seite der "heissen" Bande konnten wir ausserdem eine deutliche Schulter bei 6730 cm⁻¹ beobachten, die nur sinnvoll mit dem Übergang $E^{II}({}^{3}H_{4}) \rightarrow \Gamma_{3}({}^{3}H_{5})$ zu korrelieren ist, so dass der Zustand E^{II} (der dem fiktiven tetraedrischen Niveau Γ_{3} entspricht) ca. 347 cm⁻¹ über dem KF-Grundzustand liegen dürfte.

Die von Wagner aufgenommenen Festkörper-Remissionsspektren [20] sind, abgesehen vom erheblich schlechteren Auflösungsgrad, mit den Lösungsspektren identisch. Bei Abkühlung der Probe auf ca. 50 K waren die Banden bzw. Schultern bei 6844, 6773, 6002, 5851, 5543 und 5399 cm⁻¹ nicht mehr zu beobachten, während in diesem Energiebereich * die Banden bei 6203 und 5747 cm⁻¹ erhalten blieben [20]. Die KF-Folgezustände $E({}^{3}H_{5})$ und $A_{1}({}^{3}H_{5})$ des fiktiven tetraedrischen Zustandes $\Gamma_{5}({}^{3}H_{5})$ weisen somit eine Energieseparation von 6203-5747 = 456 cm⁻¹ auf. Die Übergänge bei 6203 bzw. 5747 cm⁻¹ sind von ihren korrespondierenden "heissen" Seitenbanden jeweils 6203 – 6002 = 201 und 6203 – 5851 = 352 bzw. 5747 – 5543 = 204 und 5747 – 5399 = 348 cm⁻¹ separiert, was darauf hindeutet, dass die angeregten KF-Zustände E^{I} und E^{II} ca. 200 bzw. 350 cm⁻¹ über dem KF-Grundzustand A_{I}^{I} liegen.

C. Interpretation der Suszeptibilitätsdaten

Es war naheliegend, das absorptionsspektroskopisch abgeleitete KF-Aufspaltungsmuster im Niederenergiebereich mit Hilfe von magnetochemischen Kriterien zu überprüfen. Die von Reynolds und Wilkinson [2] bzw. Karraker et al. [10] mitgeteilten Suszeptibilitäts (= Sz)-Daten (im Bereich 2.56 < T < 313 K) wurden von Karraker et al. anhand der beiden nachstehenden KF-Aufspaltungsvorschläge qualitativ diskutiert, wobei der Möglichkeit *a* der Vorzug gegeben wurde:

(a) Die neun nicht entarteten KF-Folgezustände der Mannigfaltigkeit ${}^{3}H_{4}$ erstrecken sich über einen Energiebereich von ca. 70 cm⁻¹, oder

(b) es liegt eine Quasi-Entartung der beiden am tiefsten gelegenen KF-Zustände Γ_4 und Γ_5 (T_d -Nomenklatur) vor, und die beiden restlichen Folgeniveaus Γ_3 und Γ_1 der Mannigfaltigkeit ${}^{3}H_4$ liegen maximal ca. 70 cm⁻¹ über dem KF-Grundzustand.

Beide Interpretationsvorschläge sind jedoch in keiner Weise weder mit den Sz-Daten noch mit den absorptionsspektroskopischen Befunden vereinbar.

Auf der Grundlage der van Vleck-Beziehung für die paramagnetische Sz ** [25] haben wir die Temperaturabhängigkeit der Sz von Cp₃UCl unter den folgenden Annahmen berechnet:

- 1. Die zweifach entarteten angeregten Zustände E^{I} und E^{II} liegen, wie absorptionsspektroskopisch abgeleitet, 200 bzw. 350 cm⁻¹, und die fiktiven tetraedrischen Zustände Γ_4 *** und Γ_1 , wie KF-theoretisch berechnet, bei 1080 bzw. 2539 cm⁻¹ über dem KF-Grundzustand A_1^{I} .
- 2. Die "tetraedrischen" KF-Funktionen erster Ordnung besiden näherungsweise Gültigkeit.

^{*} Bei höheren Wellenzahlen ist eine sehr schlechte Auflösung erzielt worden.

^{**} Die Anwendung der van Vleck-Beziehung ist hier selbst bei den tiefsten Temperaturen gerechtfertigt, da ein magnetisch inaktiver KF-Grundzustand vorliegt.

^{***} Die Aufspaltung von $\Gamma_4({}^{3}H_4)$ im KF der Symmetrie C_{3v} kann wegen der grossen Energiedifferenz zu den bei Messtemperatur thermisch populierten KF-Zuständen vernachlässigt werden.

3. Sämtliche Einflüsse, welche eine Abweichung der hier verwendeten "tetraedrischen" KF-Funktionen erster Ordnung $|\Gamma_i(T_d)>$ von den tatsächlich vorliegenden Eigenfunktionen $|\Gamma_i(\text{tatsächlich})>$ bewirken (wie *J*-*J*-Kopplung über das KF, Kovalenzeffekte, Abweichung der C_{3v} -KF-Funktionen von den tetraedrischen usw.), werden summarisch durch einen für alle Γ_i repräsentativen Proportionalitätsfaktor Q gemäss $|\Gamma_i(\text{tatsächlich})> = Q|\Gamma_i(T_d)>$ berücksichtigt *.

Wie Fig. 2 zu entnehmen ist konnten wir, trotz der oben eingeführten, vergleichsweise groben Näherungen, mit Hilfe des Proportionalitätsfaktors Q = 0.866 im gesamten Untersuchungsbereich überraschend gute Übereinstimmung zwischen den gemessenen und den berechneten Werten erzielen, so dass die aus Absorptionsmessungen abgeleitete Sequenz der KF-Zustände auch durch magnetochemische Befunde erhärtet wird.

D. Paramagnetische Verschiebung der Ringprotonen

Die experimentell erhältliche paramagnetische Verschiebung der Ringprotonen von Cp₃UCl setzt sich, da ungepaarte Elektronen vorliegen, aus einem dipolaren Anteil $(\Delta H/H)^{dip}$ und dem Fermi-Kontakt-Term $(\Delta H/H)^{kon}$ zusammen. Eine verlässliche Bestimmung der jeweiligen Anteile an der Gesamtverschiebung ist zwar erst bei genauer Kenntnis der jeweiligen KF-Eigenfunktionen möglich, rein qualitative Abschätzungen sind jedoch bei Cp₃UOR [26] sowie Cp₃UBH₄ [27] und etwas anspruchsvollere Berechnungen bei mehreren Cp₃UR-Komplexen vorgenommen worden [28]. Allerdings waren bei den oben erwähnten Abschätzungen weder die nähere Geometrie noch genauere Einzelheiten der Elektronenstrukturen der untersuchten Komplexe bekannt.

^{*} Streng genommen ist für jeden KF-Zustand ein unterschiedlicher Q-Wert zu verwenden.

Gemäss der Beziehung [29]:

$$\left(\frac{\Delta H}{H}\right)^{dip} = -\mathbf{D} \times \mathbf{G} = -\frac{(\chi_{\parallel} - \chi_{\perp})}{3N} \times \frac{(3\cos^2\theta_i - 1)}{r_i^3}$$
(1)

wobei N die Loschmidtsche Konstante, r_i und θ_i die Polarkoordinaten des *i*-ten H-Atoms und χ_{\parallel} bzw. χ_{\perp} die Suszeptibilitäten parallel und senkrecht zur Hauptachse des Cp₃UCl-Moleküls bedeuten, berechneten wir sowohl unter Verwendung des von Marks ($G_{\rm Ma} = -0.797 \times 10^{22}$ cm⁻³) * [28] als auch des von Ammon et al. ($G_{\rm Am} = -0.549 \times 10^{22}$ cm⁻³) [26] vorgeschlagenen Geometriefaktors der Cp-Ringprotonen die dipolaren Verschiebungen im Temperaturintervall 233 < T < 471 K **. Die Grösse ($\Delta H/H$)^{dip} nahm dabei innerhalb des gesamten Untersuchungsbereiches negative Werte an, so dass sich der jeweilige Kontaktanteil an der isotropen Verschiebung durch Addition der Beträge ($\Delta H/H$)^{dip} und der (positiven) *** experimentell erhaltenen Bruttoverschiebung bestimmen lässt (vgl. Tab. 2).

(2)

Gemäss der Beziehung 2 [29]:

$$\left(\frac{\Delta H}{H}\right)^{\text{kon}} = \frac{A}{g_N \beta_N} \frac{(g_J - 1) \times \overline{\chi}^*}{Ng_J \beta}$$

TABELLE 2

EXPERIMENTELLE UND BERECHNETE VERSCHIEBUNGEN DER C_5H_5 -PROTONENSIGNALE (BEZOGEN AUF Cp_3 ThCl)

a: berechnet mit Hilfe von G_{Ma} und A = -0.400 MHz b: berechnet mit Hilfe von GAm und A = -0.387 MHz

(K)	$\left(\frac{\Delta H}{H}\right)_{\exp}^{iso}$	$\left(\frac{\Delta H}{H}\right)_{a}^{dip}$	$\left(\frac{\Delta H}{H}\right)_{\rm b}^{\rm dip}$	$\left(\frac{\Delta H}{H}\right)_{a}^{kon}$	$\left(\frac{\Delta H}{H}\right)_{\rm b}^{\rm kon}$	$\left(\frac{\Delta H}{H}\right)_{a}^{iso}$	$\left(\frac{\Delta H}{H}\right)_{\rm b}^{\rm iso}$
233	10.90	-3.981	-2.742	13.713	12.671	10.064	11.070
253	10.35	-3.363	-2.321	13.713	12.671	10.064	10.667
271	9.90	-2.914	-2.011	12.814	12.361	9.820	10.307
298	9.20	-2.382	1.644	11.582	10.844	9.423	9.784
363	8.67	-1.552	-1.071	10.222	9.741	8,505	8.657
373	8,52	1.462	-1.009	9.982	9.529	8.369	8.501
383	8.40	-1.378	-0.951	9.778	9.351	8.238	8.350
393	8.25	-1.302	-0.899	9.552	9.149	8.107	8.202
403	8.15	-1.231	-0.850	9.381	9.000	7.979	8.059
413	7.97	-1.166	-0.804	9.136	8.774	7.854	7.921
423	7.95	-1.105	-0.762	9.055	8.712	7.732	7.786
433	7.80	-1.048	-0.723	8.848	8.523	7.613	7.655
443	7.70	0.996	-0.687	8.696	8.387	7.496	7.528
453	7.60	-0.947	-0.653	8.547	8.253	7.382	7.403
461	7.50	-0.910	-0.628	8.410	8.128	7.293	7.307
471	7.35	-0.867	0.598	8.217	7.948	7.184	7.190

* Der in [28] angegebene Wert musste mit 10^{-2} multipliziert werden.

** χ_{\parallel} und χ_{\perp} wurden unter denselben Voraussetzungen wie $\overline{\chi}$ in Abschn. C berechnet.

*** Positive Vorzeichen bezeichnen hier Verschiebungen nach höherem Feld.

* Mit Hilfe der in Abschn. A vorgeschlagenen Parameter der interelektronischen Wechselwirkung und der Spin-Bahn-Kopplung ergab sich der tatsächliche Ionen-Grundzustand ${}^{3}H_{4}$ von U⁴⁺ in Cp₃UCl zu: 0.9508 | ${}^{3}H_{4} > -0.2968$ | ${}^{1}G_{4} > +0.0890$ | ${}^{3}F_{4}$ >, so dass g_{J} den Wert 0.8212 annimmt.

226

Fig. 3. Temperaturabhängigkeit der reziproken isotropen Verschiebung der C_5H_5 -Protonen. $0 \circ 0$ in THF-d₈; ••• in Decalin; + + + in Toluol-d₈ [13]; X X X in THF-d₈ bzw. Naphtalin-d₁₀ [14]; ----- berechnet mit Hilfe von G_{Am} und A = -0.387 MHz.

wobei die gewählten Symbole die übliche Bedeutung haben [28,29], errechnete sich der Hyperfeinkopplungs-Parameter A^* innerhalb des gesamten Messbereiches zu -0.400 MHz ± 10% (unter Verwendung von G_{Ma}) bzw. -0.387 MHz ± 10% (bei Benützung von G_{Am}). Mit Hilfe dieser Werte und den in Abschn. C ermittelten Sz-Daten sowie der von Marks bzw. Ammon vorgeschlagenen Geometriefaktoren berechneten wir die in Fig. 3 veranschaulichten Temperaturabhängigkeiten der isotropen Ringprotonen-Verschiebungen, die oberhalb von ca. 273 K sehr gut mit den experimentellen Werten übereinstimmen.

Zusammenfassung und Diskussion der Ergebnisse

In Bereich >900 nm konnten die beobachteten Absorptionsbanden im Elektronenanregungspektrum von Cp₃UCl, auf der Basis eines KF-theoretischen Ansatzes, den zugrundeliegenden tetraedrischen Ausgangszuständen in eindeutiger Weise zugeordnet werden. Das auftreten von Schultern oder Seitenbanden auf der langwelligen Seite einiger Absorptionsbanden liess den Schluss zu, dass die zwei ersten angeregten KF-Niveaus ca. 200 bzw. 350 cm⁻¹ über dem KF-Grundzustand liegen. Ausserdem war dem Elektronenspektrum zu entnehmen, dass der zugrundeliegende "tetraedrische" KF-Zustand $\Gamma_5({}^{3}H_5)$ durch die Symmetrieerniedrigung $T_d \rightarrow C_{3v}$ in zwei Komponenten aufgespalten wird, die eine Energieseparation von ca. 460 cm⁻¹ aufweisen. Im Bereich < 900 nm sind die KF-Niveaus vergleichsweise dicht gedrängt, so dass die Energieseparationen der zugrundeliegenden "tetraedrischen" KF-Zustände unter Umständen mit den Energien von Symmetrieerniedrigungseffekten vergleichbar werden. Die in Tab. 1 getroffene Zuordnung der beobachteten Signale ist dann möglicherweise im Zuge der gegenwärtig von uns durchgeführten KF-theoretischen Analyse des Elektronenanregungsspektrums unter Berücksichtigung der tatsächlich vorliegenden C_{3v} -Symmetrie noch geringfügig zu modifizieren.

^{*} Bei mehreren Autoren ist Gl. 2 nagativ definiert; A ist dann mit positivem Vorzeichen versehen.

Unter Verwendung des absorptionsspektroskopisch abgeleiteten KF-Aufspaltungsmusters im Niederenergiebereich konnten wir in unerwartet guter Weise die Temperaturabhängigkeit der gemittelten paramagnetischen Sz (in Form der μ_{eff}^2 gegen-*T*-Darstellung) im Bereich 2.65 < T < 313 K rechnerisch reproduzieren.

Während die gemittelte Sz durch Addition zweier mit Unsicherheiten behafteter Grössen (χ_{\parallel} und χ_{\perp}) erhalten wird *, ist die Pseudo-Kontaktverschiebung der Differenz dieser Grössen proportional, wodurch die Fehlergrenzen noch beträchtlich erhöht werden. Dennoch ergab sich eine recht gute Übereinstimmung zwischen den beobachteten und den berechneten Temperaturabhängigkeiten der isotropen Verschiebungen der Ringprotonensignale.

In der vorliegenden Arbeit wurde unseres Wissens erstmalig, bei näherer Kenntnis sowohl der geometrischen als auch der Elektronenstruktur einer metallorganischen Actinoidenverbindung, auf rechnerischer Basis einigermassen verlässlich die Frage geklärt, welchen Anteil der Kontakt- bzw. Pseudokontakt-Term an der isotropen verschiebung besitzt. Genauere Berechnungen unter Verwendung realistischerer KF-Eigenfunktionen, welche die explizite C_{3v} -Symmetrie des effektiven KF und die *J*-*J*-Kopplung über das KF berücksichtigen, sind gegenwärtig im Gange.

Dank

Wir danken dem Rechenzentrum der Universität Erlangen-Nürnberg für die Bereitstellung von Rechenzeit, Herrn Dipl.-Chem. G.R. Sienel für die Überlassung der in Tab. 2 angegebenen NMR-Daten und Herrn Dipl.-Chem. H.H. Wagner für die Information über die Lage der Absorptionsbanden im Bereich 4000– 6500 cm⁻¹

Literatur

- 1 H.-D. Amberger, Z. Naturforsch. B, im Druck.
- 2 L.T. Reynolds und G. Wilkinson, J. Inorg. Nucl. Chem., 2 (1956) 246.
- 3 H. Gysling und M. Tsutsui, Adv. Organometal. Chem., 9 (1970) 361.
- 4 R.G. Hayes und J.L. Thomas, Organometal. Chem. Rev., A, 7 (1971) 1.
- 5 B. Kanellakopulos und K.W. Bagnall in: Lanthanides and Actinides, MTP Intern. Rev. Sci. Inorg. Chem. Ser. I, Vol. 7, Baltimore, University Park Press, 1972.
- 6 T.J. Marks, J. Organometal. Chem., 79 (1974) 181.
- 7 E. Cernia und A. Mazzei, Inorg. Chim. Acta, 10 (1974) 239.
- 8 T.J. Marks, J. Organometal. Chem., 95 (1975) 301.
- 9 C.-H. Wong, J.M. Yen und T.H. Lee, Acta Crystallogr., 18 (1965) 340.
- 10 D.G. Karraker und J.A. Stone, Inorg. Chem., 11 (1972) 1742.
- 11 B. Kanellakopulos, Habilitationsschrift, Universität Heidelberg, 1972.
- 12 C. Aderhold, Diplomarbeit, Universität Heidelberg, 1971.
- 13 R.D. Fischer, R. v. Ammon und B. Kanellakopulos, J. Organometal. Chem., 25 (1970) 123.
- 14 A. Spiegl, unveröffentlichte Ergebnisse.
- 15 M.L. Anderson und L.R. Crisler, CRDL 940327-2, 1968.
- 16 M.L. Anderson und L.R. Crisler, J. Organometal. Chem., 17 (1969) 345.
- 17 G.R. Sienel, Diplomarbeit, Universität Erlangen-Nürnberg, 1973.
- 18 E.J. Maier, Diplomarbeit, Universität Erlangen-Nürnberg, 1974.
- 19 G. Landgraf, Diplomarbeit, Universität Erlangen-Nürnberg, 1975.
- 20 H.H. Wagner, Diplomarbeit, Universität Erlangen-Nürnberg, 1975.
 21 H.-D. Amberger, J. Organometal. Chem., 110 (1976) 59.

* $\bar{X} = (\chi_{||} + 2\chi_{\perp})/3.$

22 H.-D. Amberger und G.R. Sienel, Z. Naturforsch. B, im Druck.

23 K.W.H. Stevens, Proc. Phys. Soc. London, A, 65 (1952) 373.

24 J.B. Gruber und H.G. Hecht, J. Chem. Phys., 59 (1973) 1713.

25 J.H. van Vleck, The Theory of Electric and Magnetic Susceptibilities, Oxford, University Press 1932.

26 R. v. Ammon, B. Kanellakopulos und R.D. Fischer, Radiochim. Acta, 11 (1969) 162.

27 R. v. Ammon, B. Kanellakopulos und R.D. Fischer, Chem. Phys. Lett., 4 (1970) 553.

28 T.J. Marks, A.M. Seyam und J.R. Kolb, J. Amer. Chem. Soc., 95 (1973) 5529.

29 W. Dew. Horrocks, Jr. und J.P. Sipe, Science, 177 (1972) 994.

 $\frac{1}{2}$